◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○○

On the Fairness of Centralised Decision-Making Strategies in Multi-TSO Power Systems

Y. Phulpin¹ M. Begovic² M. Petit¹ D. Ernst³

¹Department of power and energy systems, Supélec, Paris, France

²School of electrical and computer engineering, Georgia Tech, Atlanta, USA

³FNRS and University of Liège, Belgium

Power System Computation Conference, 2008

Y. Phulpin, M. Begovic, M. Petit, D. Ernst

Multi-TSO power system optimization

- Need for coordination in multi-TSO power system control.
- Potential benefits of a centralized control scheme:
 - Operate the system with optimal control settings.
 - Better prediction of inter-area power flows.
- Problem: design a fair scheme for multi-TSO power system optimization.

Y. Phulpin, M. Begovic, M. Petit, D. Ernst

Outline of the talk

- Introduce a fair centralized optimization scheme for multi-TSO power systems (when the objective of every TSO can be formalized as a single objective cost function).
- Study the notion of fairness in economics.
- Fairness analysis in the context of the reactive power dispatch problem in a multi-TSO system.

→ E → < E →</p>

Formalization of the multi-TSO optimization problem

- System with nbArea.
- Every area *i* is controlled by a system operator (TSO_i) .
- Each TSO_i has a cost function $C_i(\mathbf{u})$.
- **u** represents the control variables.
- Multi-TSO optimization problem:

$$\min_{\mathbf{u}} [C_1(\mathbf{u}), C_2(\mathbf{u}), \dots, C_{nbArea}(\mathbf{u})]$$
(1)

Constraints:
$$g(\mathbf{u}) = 0$$
 and $h(\mathbf{u}) \ge 0$.

Y. Phulpin, M. Begovic, M. Petit, D. Ernst

Motivation 000	Contribution ●○○○	Simulation results	Conclusions/Perspectives
Proposed Approach			

Utopian minimum

■ Let **u**^{*} be the solution of the problem:

$$\mathbf{u}_i^* = \operatorname*{arg\,min}_{\mathbf{u}\in U} C_i(\mathbf{u}) \tag{2}$$

・ロト ・回ト ・ヨト ・ヨト … ヨ

Then, the utopian minimum is defined as follows.

$$C^{ut} = [C_1(\mathbf{u}_1^*), C_2(\mathbf{u}_2^*), \dots, C_{nbArea}(\mathbf{u}_{nbArea}^*)]$$
 (3)

- If the utopian minimum were a possible solution, that would naturally satisfy every party!
- Our approach: minimize the (Euclidian) distance to the utopian minimum in a normalized cost-space.

Y. Phulpin, M. Begovic, M. Petit, D. Ernst

Contribution

Simulation results

Conclusions/Perspectives

Proposed Approach

Normalization of the cost-space

for a cost $C_i(\mathbf{u})$,

$$\overline{C_i}(\mathbf{u}) = \frac{C_i(\mathbf{u})}{C_i^{\circ} \times \chi_i}$$
(4)

With:

• C_i° , the "average overcost":

$$C_i^{\circ} = \sum_j \frac{C_i(\mathbf{u}_j^*) - C_i(\mathbf{u}_i^*)}{nbArea}$$
(5)

And χ_i , the "penalization factor":

$$\chi_i = \sum_j \frac{C_j(\mathbf{u}_i^*) - C_j(\mathbf{u}_j^*)}{C_j^{\circ}}$$
(6)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Y. Phulpin, M. Begovic, M. Petit, D. Ernst

Contribution

Simulation results

Conclusions/Perspectives

Proposed Approach

Optimization procedure

- Objective: minimize the Euclidian distance to the "utopian minimum" in the normalized cost space.
- Formalization:

$$\mathbf{u}^* = \operatorname*{arg\,min}_{\mathbf{u}\in U} \sum_{i=1}^{nbArea} (\overline{C_i}(\mathbf{u}) - \overline{C_i}(\mathbf{u}_i^*))^2 \tag{7}$$

Remark: the solution is on the Pareto-front.

Y. Phulpin, M. Begovic, M. Petit, D. Ernst

Motivation	Contribution ○○○●	Simulation results	Conclusions/Perspectives
Fairness of an allocation			
Fairness cr	iteria		

 Attributes of fairness have been vastly studied in politics, mathematics, economics, etc...

- Different approaches have been proposed: equity, reciprocity.
- We will rely on three main criteria as proposed in [J. Konow, 1996]:
 - Performance.
 - Altruism.
 - Accountability.

Y. Phulpin, M. Begovic, M. Petit, D. Ernst

Contribution

Simulation results

Illustrative example

Benchmark system

- Reactive power dispatch problem.
- IEEE 118 bus system with three TSOs.
- Three types of objective functions:
 - Minimize active power losses (*TSO*₁).
 - Minimize reactive power support (*TSO*₂).
 - Minimize a weighted function of the two criteria (TSO₃).
- Constraints:
 - Load-flow equations.
 - Bus voltages, reactive power injections.
 - Inter-area active power export.

Y. Phulpin, M. Begovic, M. Petit, D. Ernst

Contributio

Simulation results

Conclusions/Perspectives

Illustrative example

Benchmark system

Figure: IEEE 118 bus system with 3 TSOs.

Y. Phulpin, M. Begovic, M. Petit, D. Ernst

Contribution

Simulation results

イロト イヨト イヨト イヨト

크

Illustrative example

Results for the IEEE 118 bus system with 3 areas

	<i>i</i> = 1	<i>i</i> = 2	<i>i</i> = 3
$C_i(\mathbf{u}_1^*)$	43.02	1359.8	66.65
$C_i(\mathbf{u}_2^*)$	59.40	0.0	211.70
$C_i(\mathbf{u}_3^*)$	51.79	1999.9	37.84
C_i°	8.38	1119.9	67.56
χi	1.64	4.53	2.83
$\overline{C_i}(\mathbf{u}_1^*) - \overline{C_i}(\mathbf{u}_i^*)$	0	0.2682	0.1506
$\overline{C_i}(\mathbf{u}_2^*) - \overline{C_i}(\mathbf{u}_i^*)$	1.1910	0	0.9088
$\overline{C_i}(\mathbf{u}_3^*) - \overline{C_i}(\mathbf{u}_i^*)$	0.6375	0.3944	0
$C_i(\mathbf{u}^*)$	43.17	60.65	38.85
$\overline{C_i}(\mathbf{u}^*) - \overline{C_i}(\mathbf{u}_i^*)$	0.0111	0.0120	0.0053

Y. Phulpin, M. Begovic, M. Petit, D. Ernst

Contribution

Simulation results

Conclusions/Perspectives

Fairness analysis

Performance and altruism

- Performance criterion satisfied since the solution is on the Pareto-front.
- Altruism:
 - Interpretation: the overcosts should be shared according to the "efforts" made by the different TSOs.
 - The terms χ_i and C_i^0 carry out notions of altruism.

・ロト・(四)・(ヨト・(ヨト・(日)・

Y. Phulpin, M. Begovic, M. Petit, D. Ernst

Motivation	Contribution	Simulation results ○○○○●	Conclusions/Perspectives
Fairness analysis			
Accounta	bility		

- Idea for assessing the accountability: relaxing the constraints can be seen as more investments.
- The scheme is accountable if, a relaxation of TSO_i's constraints reduces its costs C_i.
- Accountability results:

Effort	$C_{1}(\mathbf{u}^{*})$	$C_{2}(\mathbf{u}^{*})$	$C_3(\mathbf{u}^*)$
None	43.17	60.65	38.85
TSO 1	42.34	49.40	38.58
TSO 2	43.13	44.25	38.45
TSO 3	43.10	61.00	38.59

Y. Phulpin, M. Begovic, M. Petit, D. Ernst

イロン イヨン イヨン ・

2

Conclusions

- Design a "fair" scheme for multi-party optimization problems.
- This scheme has some properties of fairness in the sense of economics.
- Fairness is subjective in essence... and choosing this method, or another, is subject to achieving a consensus among the different TSOs.
- New challenge: how should fairness be formalized when the objective of each party cannot be expressed as a real-valued function?

Y. Phulpin, M. Begovic, M. Petit, D. Ernst

・ロト ・回ト ・ヨト ・ヨト

Game theory approaches

- Many possible approaches.
- Some examples:
 - Asymetric game where every TSO successicely assesses its optimal control based on the scheduled controls of the other TSOs.
 - Symetric game where the TSOs agree to represent the neighboring areas with external network models.
- Problems:
 - No guarantee to elect a solution on the Pareto-front.
 - The process may take some time to converge.

Y. Phulpin, M. Begovic, M. Petit, D. Ernst

イロト イヨト イヨト イヨト

Other approaches

Methods to elect one solution on the Pareto-front:

- Weighting the objectives.
- Keeney-Raiffa method.
- Prioritization of the objectives (ϵ -constraint method).
- Goal-attainment method (Proritization of the objectives).

Problem: We are looking for a solution where all TSOs are considered equally.

Y. Phulpin, M. Begovic, M. Petit, D. Ernst

イロト イヨト イヨト イヨト

Sensitivity to biased information

- Motivations for providing biased information: get a higher weight for its own objective.
- Means of providing biased information:
 - Formulating wrong constraints.
 - Formulating wrong objectives: linear transformation, non-linear transformation
- Potential gaming strategies for formulating the individual objectives.

Y. Phulpin, M. Begovic, M. Petit, D. Ernst