◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの

Model predictive control of HVDC power flow to improve transient stability in power systems

Yannick Phulpin, INESC Porto - Supélec Jagabondhu Hazra, IBM - Supélec Damien Ernst, University of Liège

19/10/2011 IEEE Int. Conference on Smart Grid Communications

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの

Motivation

- Raising interest in embedded HVDC-links
- Challenges in operating such systems :
 - Disable natural damping properties of AC systems
 - Impact power system stability
- Research has focused on advanced control schemes for converters to :
 - improve the system response w.r.t. sudden disturbances
 - particular focus on loss of synchronism phenomena

Loss of synchronism phenomena

- Follow a default creating a local imbalance
- Consist of increasing rotor phasor angle differences between interconnected generators
 - Can be characterized by a treshold in phasor angle difference
- The ability of a power system to remain in synchronism depends on
 - the initial state
 - the disturbance
 - the control actions
 - the fault clearing time
- Transmission system operators must define appropriate tuning for protections and operational devices

Approach

- Define emergency control strategies to :
 - avoid/delay loss of synchronism
 - counterbalance the negative effect of embedded HVDC transmission
- Rely on real-time information collected through WAMS
- Set power flow through HVDC-links using Model Predictive Control (MPC)

Problems addressed with MPC

- Time-variant finite-time control problems
- Problems usually characterized by dynamics
 f : X × U × {0, 1, ..., N − 1} → X
 with :

 $\mathbf{x}[n+1] = f(\mathbf{x}[n], \mathbf{u}[n], n)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの

Decision-making approach

- Process :
 - At instant *n*, identify a sequence of *H* successive actions that minimizes a cost function *C*
 - Apply the first control action
 - reproduces the same approach at n+1
- Motivation for H << N
 - Lower computation requirements
 - Longer-term dynamics are more difficult to predict

Decision-making approach

Identification of the optimal sequence over P^H possibilities :

- Exhaustive search test P^H sequences
- A* algorithm :
 - Define a list of possibilities to explore (initially containing only the state at instant *n*).
 - At each step :
 - Pick the first element of the list
 - Explore the P possibilities from the associated state
 - Compute the additional costs with each possibility
 - increase the list with the new states and associated costs
 - Rank the elements of the list by increasing cost
 - when the first element of the list corresponds to time n + H, stop searching.

Application conditions

- The state variable corresponds to phasors and rotation speeds collected by WAMS
- The control variable is the power flows through embedded HVDC-links
 - Decision-space discretized and restricted to values by HVDC link
- function *f* represents power system dynamics
 - Approximation could be obtained by WAMS (with difficulties)

Computation of the costs

Sum of instantaneous costs c(x[n])

$$c(\mathbf{x}[n]) = \begin{cases} D(\mathbf{x}) - D_{min} & \text{if } \nexists i, j \in \{1, \dots, N_G\} \\ & \text{such that} \|\delta_i[n] - \delta_j[n]\| \le \delta_{max} \\ c_{pen} & \text{otherwise} \end{cases}$$

- Several formulations of instantaneous costs :
 - Power index $D_{P}(\mathbf{x}[n]) = \sum_{i=1}^{N_{G}} (w_{i}[n] - w_{COI}[n])(\theta_{i}[n] - \theta_{COI}[n])$ • Coherency index $D_C(\mathbf{x}[n]) = \sum_{i=1}^{N_G} g_i(\mathbf{x}[n])(w_i[n] - w_{COI}[n])$

 - Energy index $D_E(\mathbf{x}[n]) = \sum_{i=1}^{N_G} (w_i[n] w_{COI}[n])^2$

(日) (日) (日) (日) (日) (日) (日)

Application to HVDC

Case study

Conclusion

Benchmark systems

3 machine 9 bus system

IEEE 24 bus system

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

э

Simulation conditions

- System initially in steady-state operation
- 3-phase to ground fault initiated at n=0
- Simulation stops after two seconds or when synchronism is lost
- Considering only faults close to generators on the AC side
- A simulation step represents 10 ms, i.e. N=200.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Evaluation criteria

- Criteria : time to instability (TTI)
- Comparison with alternative control schemes :
 - No specific control : constant current setting (CC)
 - Control sequence that maximizes of the TTI (Optimal)
 - PI control considering phasor angle deviations (PI)

Modeling

- Simplified generator model :
 - No advanced excitation control for generators
 - Governor actions are not considered
- Simplified HVDC model :
 - LCC-converters
 - HVDC line is modeled by a resistance
 - HVDC converters are assumed to apply settings within less than 10 ms
 - One converter maintains the voltage while the other adjusts the current to match the power setting
 - Limitations are considered for both voltage and current

Results 1/4 - Illustrative example

Fault at bus 5 in the 3 machine 9 bus system (cleared at t=250ms)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Results 2/4 - Impact of H

TTI obtained with different values of the MPC time horizon

Н	Control strategy			
	D_P	D _C	D _E	
1	343	353	350	
3	361	361	356	
5	361	361	360	
10	361	361	361	
15	361	361	361	

Fault at bus 3 of the 3 machine 9 bus system

Н	Control strategy			
	D_P	D _C	D_E	
1	463	456	465	
3	477	475	475	
5	480	475	477	
10	480	477	479	
15	480	477	479	

Fault at bus 22 of the IEEE 24 bus system

Results 3/4 - Evaluation of the control strategies

TTI obtained on the 9 bus system with different control strategies

Fault	Control strategy					
	CC	PI	D_P	D _C	D _E	Optimal
1*-4	330	373	693	693	691	693
2*-7	357	364	426	430	427	437
3*-9	205	206	361	361	356	361
4*-5	299	299	299	299	299	299
4-5*	392	468	448	754	748	754
6*-4	309	340	850	358	824	856
7*-8	288	312	445	448	442	448
7-8*	260	271	799	798	807	812
6-9*	203	203	203	203	203	203

Results 4/4 - Evaluation of the control strategies

TTI obtained on the 24 bus system with different control strategies

Fault	Control strategy					
	CC	PI	D _P	D _C	D _E	Optimal
21-22*	321	323	477	475	475	482
15-21*	361	361	361	361	361	361
15*-21	476	498	752	758	754	788
17-18*	379	380	809	782	783	809
13*-23	443	488	460	463	447	468
16*-17	477	504	701	713	709	713
17*-18	462	483	866	860	847	868

Conclusion

- Contributions of the paper :
 - Using WAMS information can lead to significant benefits in terms of power system stability
 - MPC is a promising alternative for HVDC control even with a restricted time horizon
 - Instantaneous transient stability index are relevant and useful
- Further works :
 - Apply the MPC-based strategy in more detailed dynamic simulations
 - Consideration of time delays
 - Consideration of the lack of accuracy in state/dynamics estimation